Shengming Ma, Xiyan Lu,* and Zhigang Li

Shanghai Institute *of* Organic Chemistry, Academia Sinica, **345** Lingling *Lu,* Shanghai **200032,** China

Received August *5,* 1991

2-Propynoic acid and ita derivatives are hydrohalogenated regio- and stereospecifically by reaction with lithium halides in acetic acid, or preferably with 1 equiv of acetic acid in refluxing CH₃CN, to afford the thermodynamically unfavorable (Z)-3-halopropenoic acids and their derivatives as sole products. A rationale for the regio- and stereospecificity is briefly discussed.

Introduction

Selectivity provides a formidable challenge for synthetic chemists. Thus, a new synthesis of pure geometrical isomers at a double bond, especially those in the thermodynamically unfavorable Z configuration, would be a significant advance. 3-Halopropenoic acids and their derivatives have proved to be valuable intermediates in organic synthesis **owing** to the presence of three functional groups, i.e., the $C-X$ bond, the conjugated $C=C$ bond, and the carbonyl group.' Usually such compounds are prepared **as** 2 and E isomeric mixtures. Only a few stereoselective synthetic methods have been reported, most of which are for E isomers. During our study of palladium(II)-catalyzed cyclization reaction of **4'-iodobut-2'-enyl2-propynoate,2** we found that addition of lithium iodide in acetic acid to the reaction mixture gave (Z) -3-halopropenoate.³ Similarly ethyl 2-propynoate **(la)** with lithium iodide afforded ethyl (Z)-3-iodopropenoate (2a) with or without the use of palladium(II) acetate.³ In this paper, we wish to describe in detail the hydrohalogenation reaction of 2-propynoate esters and 2-propynoic acid along with other 2-propynoic acid derivatives.

Results and Discussion

Reaction of 2-Propynoates with Lithium Halides. Reaction of ethyl 2-propynoate **(la)** with lithium halides in acetic acid at 70 \degree C (method A) gave Z isomers **(2)** stereospecifically, eq **1,** though results with substituted 2-alkynoates were poor? Reaction of 2-propynoic acid with lithium halides in acetic acid also afforded (2)-halopropenoic acids,³ compounds reported to have defoliating and plant growth regulating activities. 4

$$
\frac{1}{1}OR + LIX \frac{HOAC}{70 \text{°C}} \underset{H}{\overset{X}{\underset{H}{\rightleftharpoons}}} \underset{H}{\overset{O}{\underset{H}{\rightleftharpoons}}} OR
$$
 (1)

$$
R = alkyl, H; X = I, Br, Cl
$$

Further studies showed that both the stereoselectivity and yield depended on the reaction temperature. The

	Table I. Reaction of 1a with Lithium Bromide and Acetic						
Acid in Different Solvents ^a							

 $1a + LiBr + HOAc \xrightarrow[\Delta, 22]b$ **2b**

^a Mole ratio of 1a:LiBr:HOAc = 1:1.1:1.1, solvent: 1 mL. b A complicated mixture of products **was** obtained.

reaction occurred slowly at ambient temperature and more efficiently at $50-70$ °C; at temperatures above 90 °C, a minute amount of the E isomer could be detected and the yields were lower.

Reactions in trifluoroacetic acid gave 3-halopropenoates as mixtures of *2* and E isomers in low yields as shown in *eq* 2. In contrast, both TLC and 'H NMR spectra showed that no detectable E isomer was formed during the reaction in acetic acid.

1a + Lix
$$
\frac{CF_3COOH}{70 \text{ °C}, 24 \text{ h}}
$$

\nyield (%) $\overline{Z/E}$ (isolated)
\nX = I 30 5/2
\nBr 22 5/3

Reaction of **la** with lithium bromide in aprotic solvents for 24 h followed by hydrolysis with dilute HOAc did not afford the expected product, ethyl (Z) -3-bromopropenoate **(2b).** When the reaction was carried out in the presence of **1.1** equiv of HOAc, **2b was** formed in some solvents **as** shown in Table I. Especially in refluxing $CH₃CN$, the preparation of **2b** occurred smoothly with high conversion and high stereoselectivity (method B). For 2-propynoic acid, the reaction proceeded smoothly even in the absence of HOAc. This synthesis of (2)-3-halopropenoic acids and their derivatives (method **B)** is preferred to the former one (method A) in which a large amount of alkali must be employed to neutralize the solvent acetic acid. Table I1 shows that method B can be used to prepare a wide range of (Z) -halopropenoic acids and (Z) -3-propenoates.

Reaction of 2-Propynamides with Lithium Halides. Aminolysis of the corresponding acyl chlorides (prepared from 3-halopropenoic acids^{5,6}) gives Z and E isomeric

⁽¹⁾ Smith, **A.** B.; Kilenyl, S. N. Tetrahedron Lett. **1985, 26, 4419.** Yoshiyasa, T.; Nobuyuki, I.; Kazuo, A.; Minoru, S. Chem. Pharm. Bull.
1982, 30, 3167. Miyaura, N.; Sasaki, N.; Itoh, M.; Suzuki, A. Tetrahedron
Lett. 1977, 3369. Oppolzer, W.; Robbiani, C. Helv. Chim. Acta 1980, 63,
2010.

⁽²⁾ Ma, **S.;** Lu, X. J. Chem. SOC., Chem. *Commun.* **1990, 733. (3)** Ma, **S.;** Lu, X. J. Chem. SOC., Chem. Commun. **1990, 1643,** and

references cited therein.

⁽⁴⁾ Vanghn, **T.** H. Union Carbide Corp., Belg. **1963, 631, 356;** Chem. Abstr. **1964,60,11900h.** Herrett, R. **A.;** Kurtz, A. N. Science **1963,141, 1192.** Kurtz, **A. N.;** Herrett, R. A. Union Carbide Corp., Belg. **1963, 631,083;** Chem. Abstr. **1964, 60, 15071b.**

⁽⁵⁾ (a) **Gryszkiewicz-Trochimowski,** M. E.; Schmidt, W.; Gryszkiew- icz-"rochimowski, 0. Bull. *SOC. Chim. Fr.* **1948,593.** (b) McGreer, **D.** E.; Page, B. D.; **Kaushal,** D. P. Can. J. Chem. **1973,51, 1239.**

Table II. Reaction of 2-Propynoic Acid or 2-Propynoates with Lithium Halides and Acetic Acid in Refluxing Acetonitrile (Method B)

^ª2,3-Diiodoprop-2-en-1-ol was isolated in 8% yield.¹⁵ ^bThe reaction was carried out in the atmosphere of nitrogen.¹⁵ ^cThe figures in the parentheses represent the yields using method A.

Table III. Synthesis of (Z) -3-Halopropenamides (4) by Hydrohalogenation of 2-Propynamides (3) with Lithium Halides in Acetic Acid at 90 °C (Method A)

"The figures in the parentheses represent the yield using method B. \circ The reaction was carried out at 70 °C. \circ 2.2 equiv of LiI was used.

mixtures of 3-halopropenamides. Reaction of 3-(dimethylamino)prop-2-yn-1-al with HX $(X = Br or Cl)$, followed by rearrangement was reported to afford $N.N$ dimethyl- (E) -3-halopropenamides.⁷ (Z) -3-Halopropenamides could also be prepared by hydrolysis of (Z) -3-halo-2-propenenitriles.⁸ To our knowledge, direct hydrohalogenation of 2-propynamides has been reported only once in the literature.⁶ We found that the reaction

Table IV. Reaction of 1-Phenyl-2-propynone (7) with Metal Halides in Acetic Acid at rt

—	$+$ MX	HOAc	

^a The reaction was carried out at 70 °C.

of 2-propynamides (3) with lithium halides in acetic acid at 90 \degree C also afforded (Z)-3-halopropenamides (4) with high stereoselectivity in good yields (Table III).

At 70 °C, hydrohalogenation was stereospecific but slower than at 90 °C (Table III, entries 2, 4, and 6). Assignment of stereochemistry of (Z) -3-halopropenamides 4 is based on the coupling constant of the two vicinal vinyl protons ($J = 8.4$ Hz) shown in 200-MHz ¹H NMR spectra and by comparison of their melting points with the literature values.^{5b,8} The E isomers were not detected. Generally, (Z) -3-iodopropenamides are not easily prepared, but using the present methodology, 4a, 4d, and 4g can be obtained conveniently (Table III, entries 1, 2, 7, 10, and 11). Although reaction of $N₁N$ -dimethyl-2-propynamide (3c) with lithium halides gave the products in lower yields (Table III, entries 10-13), the stereoselectivity was still high and no other products were detected. Using method B. (Z) -3-halopropenamides were obtained in lower yields (Table III).

Reaction of 2-Propynenitrile with Lithium Halides. (E) -3-Iodo-2-propenenitrile has been prepared from reaction of 1,2-diiodoethylene with copper (I) cyanide.⁹ Hydrohalogenation of 2-propynenitrile (5) with lithium halides in acetic acid also gave (Z) -3-halopropenenitriles (6) exclusively in good yields (eq 3). Because of the regio- and stereospecificity, simple procedure, and high yields, this method is superior to hydrohalogenation of 2-propynenitrile with $\overline{H}X$ (X = Br, Cl)¹⁰ or dehydration of the corresponding amides.⁵ The stereochemistry of 6 was assigned by ¹H NMR spectral analysis as previously described for the analogous compounds (4).

$$
\begin{array}{c|c}\n\hline\n\text{C}N + \text{LiX} & \text{HOAc} & \text{X} & \text{C}N \\
\hline\n\text{S} & \text{in scaled tube} & \text{H} & \text{H} \\
\text{S} & 70 \, \text{°C, 24 h} & \text{B} \\
\text{B: X = B} & \text{B6} & \text{A} \\
\text{D: X = C1} & \text{B6} & \text{B6} \\
\hline\n\end{array}
$$
\n(3)

Reaction of 1-Phenyl-2-propynone with Metal Halides. Reaction of 1-phenyl-2-propynone (7) with metal halides occurred at rt (Table IV). Reaction of 7 with lithium chloride in acetic acid at 70 °C did not afford the expected product, 3-chloro-1-phenylpropenone (8c) (Table IV, entry 7), probably owing to the polymerization of both 8c and 7. The same reaction at rt proceeded with high Z

⁽⁶⁾ Wojcik, J.; Witanowski, M.; Webb, G. A. J. Mol. Struct. 1978, 49, 249.

⁽⁷⁾ Neuenschwander, M.; Hafner, K. Angew. Chem., Int. Ed. Engl. 1968, 7, 460. Gais, H. J.; Hafner, K.; Neuenschwander, M. Helv. Chim. Acta 1969, 52, 2641. Niederhauser, A.; Neuenschwander, M. Ibid. 1973, 56, 1318.

⁽⁸⁾ Scotti, F.; Frazza, E. J. J. Org. Chem. 1964, 29, 1800.

⁽⁹⁾ Coe, P. L.; Milner, N. E.; Smith, J. A. J. Chem. Soc., Perkin Trans. 1 1975, 654.

⁽¹⁰⁾ Kalaizhyan, A. E.; Kurginyan, K. A.; Chukhazhyan, G. A. Arm.
Khim. Zh. 1974, 27, 668; Chem. Abstr. 1974, 81, 151485k.

 $R = COOH$, COOR¹, CONR¹R², CN

selectivity (Table IV, entry 6). Using NaI or LiI, the reaction at rt afforded both *2* and E isomers of 3-iodo-lphenyl-2-propenone **(8a).** With longer reaction time, the *2* isomer converted gradually to the thermally more stable E isomer. The results are similar to that reported by Taniguchi et al.¹¹

Mechanism. The high stereospecificity of this reaction ruled out the possibility of direct HX addition to the propynoates in HOAc, which is reported to show low stereoselectivity. $5a,6,10,12$ On the other hand, the regiospecific attack of halide ion at C-3 carbon atom of the electrondeficient carbon-carbon triple bond indicates a nucleophilic addition mechanism.^{13,14} This nucleophilic addition mechanism is **also** consistent with the different reactivities of the carbon-carbon multiple bonds in allyl or propargyl 2-propynoates toward lithium halides in acetic acid, in which the electron-deficient carbon-carbon triple bond is hydrohalogenated while the electron-rich multiple bond remains intact.¹⁵

A mechanism involving contact ion pairs between Li+ and X⁻ and the coordination of Li⁺ with the carbonyl oxygen atom has been postulated to explain the stereospecificity? When less easily coordinated cations, such **as** sodium bromide or tetrabutylammonium bromide were used, the reaction of **la** still afforded **2b** with high stereoselectivity. Furthermore, it is very difficult to imagine a six-membered transition state3 for the reaction of **2** propynenitrile **(5)** with lithium halides. The above two observations indicate that the stereospecificity cannot be attributed to a simple coordination effect.

In both methods A and B the use of terminal electrondeficient acetylene derivatives, lithium halides, and acetic acid are all crucial; thus, a termolecular transition state might be responsible for the high *2* stereospecificity. The transition state, in which the halide ion and acetic acid are on the same side of the carbon-carbon triple bond, i.e., **9a,** is considered to be unfavorable owing to steric hindrance. Thus, the reaction might occur through the less crowded transition state **9b,** in which the halide ion and acetic acid are on opposite sides of the carbon-carbon triple bond to form the *2* isomer (Scheme I).

On the other hand, the postulated stereoelectronic effect of the vinyl anion intermediate,¹⁶ formed by the nucleophilic addition of halide ion to the electron-deficient

carbon-carbon triple bond, may be responsible for the observed stereospecificity. Repulsion of the electron pairs on the halogen atom and the electron pair of the carbanion makes the \overline{E} intermediate 10a unstable, while in Z intermediate **10b** the two relevant pairs are far away from each other. Thus, the reaction occurs through the more stable 2 intermediate **10b** to form the 2 isomer **as** the sole

product (Scheme 11).

In the *case* of the propynones, it seems unlikely that the *2* and E mixtures might result from isomerization of allenol intermediates formed by the Michael addition of the halide ion to the carbon-carbon triple bonds, followed by protonation." Usually, the isomerization of allenols gives the thermally stable E isomer instead of a Z and E mixture. We propose that the *2* isomer might **also** be formed initially during the reaction by a mechanism similar to that of the 2-propynoates. However, the *2* isomers might isomerize to E isomers when heated in the presence of **an** acid.¹⁷ The experiments show that the 1-phenyl-3(Z)iodo-2-propenone $((Z)$ -8a) is transformed into the E isomer slowly on standing at 35 °C and somewhat faster in HOAc. After **4** h in the presence of 9% of NaI in HOAc, the E isomer **was** isolated in 77% yield along with 3% of *2* isomer recovered.

Experimental Section

Materials. 2-Propynoic acid,¹⁸ ethyl or methyl 2-propynoate,¹⁹
2-propynamide,²⁰ N-V-dimethyl-2-propynamide,²⁰ 2-propynenitrile,¹⁹ and ethynyl phenyl ketone²¹ were prepared by literature methods. Allyl or propargyl 2 propynoates were synthesized by azeotropic distillation of 2 propynoic acid and allyl or propargyl alcohol under the **catalysis** of concentrated *HzSOl* in benzene in **57%** and **66%** yield, re- spectively.

All **salta** were dried at **100 "C** over **Pz05.** All compounds were obtained **as** colorleas liquids **unless** a melting point is given. The analytical samples of liquid were further purified by Kugelrohr distillation at the specified oven temperature (ot).

Reaction of **Lithium Halidea with 2-Propynoatea in Acetic Acid (Method A). Typical Procedure. Ethyl (Z)-3-Iodopropenoate (2a). A** mixture of ethyl 2-propynoate (100 mg, **¹** mmol) and LiI (150 mg, 1.1 mmol) in acetic acid (1 mL) was stirred and heated at 70 °C. The reaction was monitored by GLC (after neutralization). After **15** h, water **(5 mL)** waa added. The **mixture** was neutralized with solid K_2CO_3 until no CO_2 was evolved and then extracted with ether $(3 \times 10 \text{ mL})$. The extracts were dried **(MgSOJ,** and the product **2a** was obtained by preparative TLC on silica gel using petroleum ether/ethyl acetate (101) **as** the

⁽¹¹⁾ Taniguchi, M.; Kobayashi, S.; Nakagawa, M.; Hino, T.; Kishi, Y. *Tetrahedron Lett.* **1986, 27, 4763.**

^{(12) (}a) Maclnnes, L.; Schorstein, D. E.; Suckling, C. J. J. Chem. Soc.
Perkin Trans. 1 1981, 1103. (b) Biougne, J.; Theron, F. C. R. Acad. Sci.;
Ser. C 1971, 272, 82. (c) Just, G.; Ouellet, R. Can. J. Chem. 1976, 54, 2925 **536.**

⁽¹³⁾ Winterfeldt, E. *Angew. Chem., Znt. Ed. Engl.* **1967,** *6,* **423 and references cited therein.**

⁽¹⁴⁾ Bowden, K.; Price, M. *J. Chem. SOC. B* **1970,1466 and references cited therein.**

⁽¹⁵⁾ Ma, S.; Lu, X. *Tetrahedron Lett.* **1990, 31, 7653.**

⁽¹⁶⁾ Deslongchamps, P. *Stereoelectronic Effects in Organic Chemistry;* **Pergamon: Oxford, 1983; Chapter 7, p 291.**

⁽¹⁷⁾ Terry, E. M.; Eichelberger, L. *J. Am. Chem. SOC.* **1925,47, 1402. Seltzer, S.** *J. Am. Chem. SOC.* **1961,83,1861;** *Chem. hd. (London)* **1959, 1313. Patai, S., Ed.** *The Chemistry of Functional Groups: The Chem-istry of Alkenes, V.* **1; Interscience Publisher: London, 1964; p 383. (18) Heilbron, I.; Jones, E. R. H.; Sondheimer, F.** *J. Chem. SOC.* **1949, 604.**

⁽¹⁹⁾ Jung, M. E.; Buszek, K. R. *J. Am. Chem.* **Soc. 1988,110,3965. (20) Crow, W. D.; Leonard, N.** *J. Org. Chem.* **1965,30, 2660.**

⁽²¹⁾ Kowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, L. *J. Chem. SOC.* **1946, 39.**

solvent; yield 210 *mg* (91%). Spectral data are identical with the reported data.²

Reaction of **2-Propynoates and Lithium Halides and** Acetic Acid in Refluxing CH₃CN (Method B). Typical **Procedure. Ethyl (2)-3-1odopropenoate (2a).** A mixture of ethyl 2-propynoate (100 mg, 1 mmol), LiI (150 mg, 1.1 mmol), and acetic acid (65 mg, 1.1 mmol) was refluxed in CH₃CN (1 mL) for 21 h. A similar workup procedure **as** above gave **2a** in pure form; yield 200 mg (87%).

The following compounds were prepared similarly. The **Z** and E isomers of ethyl 3-halopropenoates could be separated either by TLC using petroleum ether/ethyl acetate (10:1) as the eluent or GC analysis with a column of OV-1 at 70 °C. Spectral data of ethyl (E) -3-iodopropenoate,²² ethyl (Z)-3-bromopropenoate $(2b)$,²² ethyl (E) -3-bromopropenoate,²² ethyl (Z) -chloropropenoate $(2c),^{22}$ methyl (Z) -iodopropenoate $(2d),^{23}$ and methyl (Z) -3bromopropenoate $(2e)^{23}$ are identical with those in the literature.

Allyl (Z)-3-iodopropenoate (2f): ot 90-92 °C (7 mmHg); IR (neat) 3050,1710,1625,1600,1195,1150 cm-'; 'H NMR (60 **MHz,** CDCl₃) δ 7.47 (d, $J = 8.40$ Hz, 1 H), 6.90 (d, $J = 8.40$ Hz, 1 H), 6.40-5.00 (m, 3 H), 4.60 (d, 2 H); MS m/e (%) 240 (4.62), 239 (M⁺ + 1, 21.45), 238 (M⁺, 25.46), 195 (M⁺ - C₃H₇, 8.38), 182 (M⁺ - OC₃H₄, 100.00), 153 (M⁺ - CO₂C₃H₅, 12.89), 111 (M⁺ - I, 9.66). Anal. Calcd for $C_6H_7IO_2$: C, 30.28; H, 2.96. Found: C, 30.04; H, 2.78.

Allyl (Z) -3-bromopropenoate $(2g)$: ot 65-67 °C (7 mmHg) ; IR (neat) 3050,1715,1625,1605,1200,1160 cm-'; 'H NMR (60 MHz, CCl₄) δ 7.03 (d, $J = 8.40$ Hz, 1 H), 6.60 (d, $J = 8.40$ Hz, 1 H), 6.43-5.00 (m, 3 H), 4.60 (d, 2 H); MS m/e (%) 193 (M^{+ (81}Br) $+$ 1, 25.99), 191 (M⁺(⁷⁹Br) + 1, 25.39), 134 (M⁺ - OC₃H₄, 100.00), 111 (M^+ – Br, 10.06). Anal. Calcd for $C_6H_7BrO_2$: C, 37.73; H, 3.69. Found: C, 37.70; H, 3.33.

Allyl (Z)-3-chloropropenoate (2h): ot 100-102 °C (15 mmHg); IR (neat) 3080, 1730, 1650, 1620, 1220, 1165 cm⁻¹; ¹H NMR (60 MHz, CCl₄) δ 6.55 (d, $J = 8.40$ Hz, 1 H), 6.40-5.00 (m, 4 H), 4.60 (d, 2 H); MS m/e (%) 149 (M⁺⁽³⁷Cl) + 1, 14.52), 148 131 (M⁺(³⁷Cl) – OH, 3.17), 129 (M⁺(³⁵Cl) – OH, 10.56), 111 (M⁺ – Cl, 3.91), 91 (M⁺(³⁷Cl) – OC₃H₅, 47.30), 89 (M⁺(³⁵Cl) – OC₃H₅, 100.00). Anal. Calcd for $C_6H_7ClO_2$: C, 49.07; H, 4.81. Found: C, 48.43; H, 4.47. $(M^{+}(3^{7}Cl), 3.85), 147 (M^{+}(3^{5}Cl) + 1, 35.05), 146 (M^{+}(3^{5}Cl), 2.63),$

Propargyl (Z) -3-iodopropenoate $(2i)$: ot 83-85 °C (2 mmHg) ; IR (neat) 3225,2100,1710,1600,1190,1150 cm-'; 'H NMR (60 MHz, CCl₄) δ 7.55 (d, J = 8.40 Hz, 1 H), 6.90 (d, J = 8.40 Hz, 1 H), 4.70 (d, 2 H), 2.40 (t, 1 H); MS *m/e* (%) 237 (M+ + 1,1.35), I, 4.19). Anal. Calcd for $C_6H_5IO_2$: C, 30.54; H, 2.14. Found: C, 31.01; H, 2.12. 236 (M⁺, 20.19), 192 (M⁺ - CO₂, 7.07), 182 (3.36), 181 (M⁺ - OC₃H₃, 100.00), 153 (M⁺ - CO₂C₃H₃, 26.30), 127 (I⁺, 26.60), 109 (M⁺ -

Propargyl (Z)-J-bromopropenoate (2j): ot 80-82 "C (3 mmHg); IR (neat) 3220, 2100, 1710, 1605, 1200, 1160 cm⁻¹; ¹H NMR (60 MHz, CCl₄) δ 7.05 (d, $J = 8.40$ Hz, 1 H), 6.60 (d, $J =$ 8.40 Hz, 1 H), 4.70 (d, 2 H), 2.35 (t, 1 H); MS *m/e* (%) 191 $(M^+(81Br) + 1, 1.83), 190 (M^+(81Br), 0.96), 189 (M^+(78Br) + 1, 1.96),$ 188 (M⁺(⁷⁹(Br), 1.12), 135 (M⁺ - OC₃H₃, 100.00), 109 (M⁺ - Br, 6.36), 107 (M⁺(⁸¹Br) – CO₂C₃H₃, 15.28), 105 (M⁺(⁷⁹Br) – CO₂C₃H₃, 15.17). Anal. Calcd for $C_6H_5BrO_2$: C, 38.13; H, 2.67. Found: C, 38.38; H, 2.53.

Propargyl (Z)-3-chloropropenoate (2k): ot 75-77 "C (4 mmHg); IR (neat) 3300, 2100, 1720, 1610, 1210, 1160 cm⁻¹; ¹H NMR (60 MHz, CCl₄) δ 6.58 (d, J = 8.00 Hz, 1 H), 6.03 (d, J = 8.0 Hz, 1 H), 4.58 (d, 2 H), 2.36 (t, 1 H); MS m/e (%) 147 (M⁺(³⁷Cl) + 1, 2.87), 146 (M⁺(³⁷Cl), 0.82), 145 (M⁺⁽³⁵Cl) + 1, 9.95), 109 (M⁺ – Cl, 3.15), 93 (8.18), 91 (M⁺⁽³⁷Cl) – OC₃H₃, 46.09), 89 (M⁺⁽³⁵ Found: C, 49.63; H, 3.49.

Preparation of (Z)-3-Halopropenoic Acids. Typical Procedure. (2)-3-Iodopropenoic Acid (21): Method A. A mixture of 2-propynoic acid (70 mg, 1 mmol) and LiI (150 mg, 1.1 mmol) in acetic acid (1 mL) was heated at 70 °C with stirring.
The reaction was monitored by TLC. After 24 h, acetic acid was removed under vacuum, and subsequent purification by prepa-

(22) Biougne, J.; Theron, F. C. R. *Acad. Sci.* **l971,272C, 858. (23)** Topek, **K.;** Vsetecka, V.; Prochazka, M. *Collect. Czech. Chem.*

Commun. **1978,43, 2395.**

rative TLC (solvent: petroleum ether/ethyl acetate 1:l) afforded **21:** yield 175 mg (89%); mp 63-64 "C (lit.% mp 63-65 "C). The spectral data are identical with those reported.24

Method B. A mixture of 2-propynoic acid (70 mg, 1 mmol) and LiI (150 mg, 1.1 mmol) was refluxed in CH_3CN (1 mL) for 24 h. The mixture was acidified with 2 N HC1 and extracted with ethyl acetate $(4 \times 10 \text{ mL})$. After drying (MgSO₄), removal of solvent, and purification by preparative TLC, 21 was obtained in pure form; yield 160 mg (81%).

 (Z) -3-Bromopropenoic acid (2m): mp 53-54 °C (lit.^{12c} mp) 54-55 °C); IR (neat) 3400, 1720, 1600, 1160 cm⁻¹; ¹H NMR (90 $(d, J = 8.60$ Hz, 1 H); MS m/e (%) 153 $(M⁺(81Br) + 1, 5.17)$, 152 $(M^{+(81}Br), 92.09), 151 (M^{+(79}Br) + 1, 6.70), 150 (M^{+(79}Br), 100.00),$ 135 ($M^{+}(81Br)$ – OH, 56.51), 133 ($M^{+}(79Br)$ – OH, 54.26), 124 $(M^{+(81}_{\text{Br}}) - CO, 12.87), 122 (M^{+(79}_{\text{Br}}) - CO, 13.62), 107 (M^{+(81}_{\text{Br}}))$ $-CO₂H$, 29.46), 105 (M⁺(⁷⁹Br) – CO₂H, 31.67), 71 (M⁺ – Br, 79.30), MHz, CDCl₃) δ 11.31 (bs, 1 H), 7.23 (d, $J = 8.60$ Hz, 1 H), 6.66 45 ($CO₂H⁺$, 70.00).

(Z)-3-Chloropropenoic acid (2n): mp 58-59 $^{\circ}$ C (lit.²⁵ mp) 61-62 "C). Spectral data are identical with those reported.

Preparation of (2)-3-Halopropenamides. Typical Procedure. (2)-3-Iodopropenamide (4a): Method A. A mixture of 2-propynamide (70 mg, 1 mmol) and lithium iodide (150 mg, 1.1 mmol) in acetic acid (1 mL) **was** heated at 90 "C. After 22 was diluted with water (5 mL) , neutralized with solid K_2CO_3 until no $CO₂$ was evolved, and extracted with ethyl acetate $(4 \times 10 \text{ mL})$. The organic layer was dried $(MgSO₄)$. $4a²⁶$ was obtained by purification with preparative TLC (solvent: petroleum ether/ethyl acetate 1:l); yield 195 mg (98%).

Method B. A mixture of 2-propynamide (70 mg, 1 mmol) and lithium iodide (150 mg, 1.1 mmol) was refluxed in CH_3CN (1 mL). After 24 h, the reaction was complete **as** monitored by TLC. **4a** was obtained after similar workup **as** above; yield 160 *mg* (80%).

Spectral data of $4b$,^{5b} $4g$,²⁷ $4h$,²⁷ and $4i^{27}$ are identical with those reported.

(Z)-3-Iodopropenamide (4a):²⁶ mp 98-102 °C; **IR (KCl)** 3250, **3100,1660,1580,1380,L280,1050,800,600** cm-l; 'H NMR (200 Hz, 1 H); MS *m/e* (%) 198 (M+ + 1, 2.53), 197 (M+, 42.48), 181 $- 2H$, 14.10), 43 (CONH⁺, 100.00). Anal. Calcd for C₃H₄INO: C, 18.29; H, 2.05; N, 7.11. Found: C, 18.63; H, 1.98; N, 7.15. (Z) -3-Bromopropenamide (4b): mp 92-94 °C (lit.^{5b} mp MHz, CD_3COCD_3) δ 7.22 (d, $J = 8.50$ Hz, 1 H), 7.04 (d, $J = 8.50$ $(M^+ - NH_2, 18.62)$, 153 $(M^+ - COMH_2, 8.06)$, 151 $(M^+ - COMH_2)$

90-90.5 "C). **(2)-3-Chloropropenamide (4c):** mp 108-110 "C (lit.8 mp 111-112 °C); IR (KCl) 3350, 3150, 1660, 1610, 1400, 1300, 1260, 1210,1100,800,700 cm-'; 'H *NMR* (200 **MHz,** CD3COCDJ **6** 6.72 $(d, J = 8.40 \text{ Hz}, 1 \text{ H}), 6.19 (d, J = 8.40 \text{ Hz}, 1 \text{ H}); \text{MS } m/e \text{ } (\%)$ 108 M⁺(³⁷Cl) + 1, 11.63), 107 (M⁺(³⁷Cl), 20.54), 106 (M⁺(³⁵Cl) + 1, 36.91), 105 ($M^+(^{35}Cl)$, 59.15), 91 ($M^+(^{37}Cl)$ – NH_2 , 40.47), 89 $(M^{+(35}CI) - NH_2$, 95.92), 79 $(M^{+(37}CI) - CO$, 5.46), 77 $(M^{+(35}CI) - CO$, 16.23), 43 (CONH+, 100.00).

N-Ethyl(Z)-3-iodopropenamide (4d):% oil; IR (neat) 3300, 3080,1650,1600,1540,1220,800,700 cm-'; 'H NMR (200 MHz, 1 H), 3.15 (m, 2 H), 1.11 (t, 3 H); MS *m/e* (%) 226 (M+ + 1,12.50), 225 (M⁺, 33.71), 210 (M⁺ - Me, 8.09), 197 (M⁺ + 1 - Et, 1.79), CD₃COCD₃) δ 7.13 (d, J = 8.70 Hz, 1 H), 6.96 (d, J = 8.70 Hz, 182 ($M^+ + 1 - NHEt$, 3.17), 180 ($M^+ - 1 - NHEt$, 100.00), 98 (M^+ $-$ I, 80.21), 44 $(CONH₂⁺, 52.44)$.

N-Ethyl(Z)-3-bromopropenamide (4e):" oil; IR (neat) **3300,** 3060,1640,1540,1250,1200,800,700 cm-'; 'H NMR (200 MHz, 1 H), 3.15 (m, 2 H), 1.10 (t, 3 H); MS *m/e* (%) 180 (M+(81Br) + CD₃COCD₃) δ 6.83 (d, $J = 8.10$ Hz, 1 H), 6.70 (d, $J = 8.10$ Hz,

⁽²⁴⁾ Jung, M. **E.;** Hagenah, J. **A,;** Zeng, L.-M. *Tetrahedron Lett.* **1983, 24, 3973.**

⁽²⁵⁾ Kurtz, A. N.; Billupe, W. E.; Greenlee, R. B.; Hamil, H. F.; Pace, **(26)** Wojcik, J.; Stafaniak, L.; Witanowski, M.; Webb, G. A. *Bull. Pol.* W. T. J. Org. *Chem.* **1965,30, 3141.**

⁽²⁷⁾ Wojcik, J.; Witanowski, M.; Webb, G. A. J. *Mol. Struct.* **1978,49,** *Acad. Sci., Chem.* **1984,32, 85;** *Chem. Abstr.* **1985,102,5251s.**

⁽²⁸⁾ Wojcik, J.; Witanowski, M.; **Stefaniak,** L. *Bull. Acad. Pol. Sci. Ser.* **249.**

Sci. Chrm. **1978,26,927;** *Chem. Abstr.* **1980,92, 21923t.**

⁽²⁹⁾ Wojcik, J.; Witanowski, M.; Stefaniak, L. J. *Mol. Struct.* **1983, 102, 19.**

1, 35.63), 179 ($M^{+(81}Br)$, 11.73), 178 ($M^{+(79}Br) + 1$, 31.54), 177 $(M^+(^{79}Br), 9.88), 164 (M^+(^{81}Br) - Me, 8.18), 162 (M^+(^{79}Br) - Me,$ 8.46), 135 (M⁺(⁸¹Br) - NHEt, 69.05), 133 (M⁺(⁷⁹Br) - NHEt, 68.31), 107 (M⁺⁽⁸¹Br) - CONHEt, 15.04), 105 (M⁺⁽⁷⁹Br) - CONHEt, 14.72), 98 (M⁺ - Br, 100.00).

 N -Ethyl (Z) -3-chloropropenamide $(4f)$:²⁸ oil; IR (neat) 3300, 3060,1640,1540,1260,1200,810,700 cm-'; 'H NMR (200 MHz, 1 H), 3.15 (m, 2 H), 1.10 (t, 3 H); MS m/e (%) 271 (2 M⁺(³⁷Cl) + 1, 1.05), 270 (2 M⁺(³⁷Cl), 0.87), 269 (2 M⁺(³⁷Cl)(³⁵Cl) + 1, 6.00), 268 (1.53), 267 (2 M⁺(³⁵Cl) + 1, 10.62), 137 (0.80), 136 (M⁺(³⁷Cl $268 (1.53), 267 (2 M⁺(³⁵Cl) + 1, 10.62), 137 (0.80), 136 (M⁺(³⁷Cl)) + 1, 94.15), 135 (M⁺(³⁷Cl), 76.49), 134 (M⁺(³⁶Cl) + 1, 26.43), 133$ $(M^{+}(35Cl), 535$ (M⁻⁽⁻⁻⁻Cl), 76.49), 134 (M⁻ (---Cl) + 1, 26.45), 135
(M⁺(³⁵Cl), 6.25), 120 (M⁺(³⁷Cl) – Me, 3.81), 118 (M⁺(³⁵Cl) – Me, $(M^+(^{37}Cl) + 1 - NHEt$, 2.04), 91 $(M^+(^{37}Cl) - NHEt$, 9.67), 90 $(M^{+(35}Cl) + 1 - NHEt$, 100.00), 89 (28.31), 63 $(M^{+(37}Cl) - CON-$ HEt, 10.25), 61 (M⁺(³⁵Cl) – CONHEt, 28.40). CD₃COCD₃) δ 6.64 (d, $J = 8.10$ Hz, 1 H), 6.32 (d, $J = 8.10$ Hz, 13.16), 106 ($M^{+}(^{37}Cl)$ – Et, 1.13), 105 (1.34), 104 (0.40), 99 (M^{+} $+$ 1 - Cl, 80.79), 98 (M⁺ - Cl, 33.15), 97 (M⁺ - HCl, 6.64), 92

Preparation of (2)-3-Hal0-2-propenenitrile. Typical Procedure. (Z)-3-Iodopropenenitrile (sa). A mixture of 2 propynenitrile (50 mg, 0.98 mmol), LiI (150 mg, 1.1 mmol), and acetic acid (1 mL) in a sealed tube was stirred and heated at 70 $\rm ^oC$ for 24 h. Through a procedure similar to that of (Z) -3-halopropenoates, **6a** was isolated in pure form: yield 175 mg (98%); IR (neat) 3050, 2200, 1570 cm⁻¹; ¹H NMR (60 MHz, CCl₄) δ 7.63 (d, *J* = 8.60 Hz, 1 H); MS *m/e* (%) 180 (M+ + 1, 3.50), 179 (M', 60.50), 128 (11.58), 127 (I+, 28.46), 52 (M⁺ - I, 100.00), 51 (M⁺ - HI, 49.01); HRMS calcd for C_3H_2IN 178.9231. Found: 178.9231.

Spectral data of (Z)-3-bromopropenenitrile (6b)^{5b} are identical with those reported.

(Z)-3-Chloropropenenitrile (6c). The reaction was carried out on a scale of 16 mmol of 2-propynenitrile **(5),** and the product was purified by distillation: bp $78-80$ °C (90 mmHg) (lit.^{5b} bp 145-146 "C); IR (neat) 3050,2200,1560 *cm-';* 'H *NMR* (60 MHz, m/e (%) 90 (M⁺(³⁷Cl) + 1, 5.94), 89 (M⁺(³⁷Cl), 31.26), 88 (M⁺(³⁵Cl) m/e (%) so (M⁺(³⁵Cl), 17 + 1, 3.34), 89 (M⁺(³⁷Cl) - CN, 1.10), 62
+ 1, 21.58), 87 (M⁺(³⁵Cl), 100.00), 63 (M⁺(³⁷Cl) - CN, 1.10), 62 $(M^{+}(^{37}Cl) - 1 - CN, 4.06)$, 61 (M⁺(³⁵Cl) – CN, 4.18), 60 (M⁺(³⁵Cl)
(M⁺(³⁷Cl) – 1 – CN, 4.06), 61 (M⁺(³⁵Cl) – CN, 4.18), 60 (M⁺(³⁶Cl) $- 1 - CN$, 14.60), 53 (3.18), 52 (M⁺ - Cl, 85.60), 51 (M⁺ - HCl, CCl₄) δ 7.00 (d, $J = 8.0$ Hz, 1 H), 5.85 (d, $J = 8.0$ Hz, 1 H); MS 3 1.04).

Reaction of 1-Phenyl-2-propynone with Metal Halides in Acetic Acid. The reaction was *carried* out at rt and the procedure was similar to that of 2-propynoate (method A).

Spectral data of the **E** isomer of **8a, 8b,** and **8c** are identical with the reported data,³⁰ and those of Z isomers are given below.

l-Phenyl-3-iodo-2-propenone (8a) $(Z \text{ isomer})$:¹¹ IR (neat) 3030,1660,1600,1560,1220,1000,940,730,680 cm-'; 'H NMR (200 *MHz,* CDC1,) 6 7.90 (m, 2 H), 7.88 (d, J ⁼8.40 *Hz,* 1 H), 7.55

(m, 3 **H),** 7.45 (d, J = 8.40 Hz, 1 H); MS *m/e* (%) 391 (3.55), 390 $(2 M⁺ + 1 - I, 11.79), 313 (2 M⁺ + 1 - I - Ph, 14.16), 286 (1.65),$ 285 (2 M+ + 1 - I - PhCO, 7.24), 259 (M+ + **1,0.28),** 258 (M', 0.30), 257 (M+ - 1,0.97), 127 **(I+,** 3.17), 105 (PhCO+, 100.00), 77 (Ph+, 45.76).

l-Phenyl-3-bromo-2-propenone (8b) *(2* isomer):31 IR (neat) 3050,1660,1580,1230,1000,730,695 cm-'; 'H NMR (200 MHz, CDC13) 6 7.95 (m, 2 H), 7.70-7.30 (m, **4** H), 6.95 (d, *J* = 8.20 Hz, 1 H); \overline{MS} *m/e* $(\%)$ 213 $(M^+(^{81}Br) + 1, 3.25)$, 212 $(M^+(^{81}Br)$, 10.74), 211 $(M^+(^{79}Br) + 1, 4.08)$, 210 $(M^+(^{79}Br)$, 12.27), 135 $(M^+(^{81}Br) -$ Ph, 8.24), 133 ($M^+(^{79}Br)$ - Ph, 8.28), 132 (5.00), 131 (M^+ - Br, 42.85), 106 (8.07), 105 (PhCO+, l00.00), 77 (Ph+, 67.51).

l-Phenyl-3-chloro-2-propenone (8c) (Z isomer):32 IR (neat) 3050,1660,1590,1230,1000,880,740 cm-'; 'H NMR (200 MHz, CDC13) 6 7.80 **(m,** 2 HI, 7.30 (m, 3 H), 6.80 (d, *J* = 8.20 Hz, 1 H), 6.53 (d, $J = 8.20$ Hz, 1 H); MS m/e (%) 171 (4.00), 170 (1.58), 169 (M⁺(³⁷Cl) + 1, 8.64), 168 (M⁺(³⁷Cl), 4.11), 167 (M⁺(³⁵Cl) + 26.15). 1, 19.21), 166 ($M^{+}(^{35}Cl)$, 4.60), 131 (M^{+} – Cl, 19.80), 105 (PhCO⁺,

Isomerization of (Z)-8a in the Presence of NaI in HOAc. A mixture **of (Z)-8a** (65 mg, 0.25 mmol) and NaI (3.5 mg, 0.023 mmol) in HOAc (0.25 mL) was stirred at 35 °C for 4 h. Through *direct preparative TLC using petroleum ether/ethyl acetate* (10.1) **as** the solvent, 50 mg of **(E)-8a** was isolated (yield 77%) along with 2 mg of **(Z)-8a** recovered (3%).

Acknowledgment. **We** thank the National Natural Science Foundation of China **and** Academia Sinica for financial support.

Registry No. la, 623-47-2; **lb,** 922-67-8; **IC,** 14447-00-8; **Id,** 4383-39-5; **le,** 471-25-0; **(Z)-2a,** 31930-36-6; **(Z)-2b,** 31930-34-4; **(Z)-2c,** 16490-99-6; **(Z)-2d,** 6214-23-9; **(Z)-2e,** 6214-22-8; **(Z)-2f,** 132973-27-4; **(Z)-2g,** 132973-28-5; **(Z)-2h,** 132973-29-6; **(Z)-2i,** 132973-25-2; **(Z)-2j,** 132973-26-3; **(Z)-2k,** 35227-67-9; **(27-21,** 6214-35-3; **(Z)-2m,** 1609-92-3; **(Z)-2n,** 1609-93-4; **3a,** 7341-96-0; 3b, 2682-33-9; 30,2682-34-0; **(Z)-4a,** 137627-61-3; **(Z)-4b,** 41866- **(Z)-4f,** 137627-64-6; **(Z)-4g,** 68596-67-8; **(Z)-4h,** 68596-66-7; **(Z)-4i,** 68596-65-6; **(Z)-6a,** 137627-62-4; **(Z)-6c,** 3721-37-7; 7,3623-15-2; **(Z)-8a,** 108161-49-5; **(E)-8a,** 24883-49-6; **(Z)-8b,** 137627-65-7; 7681-82-5; LiI, 10377-51-2; LiBr, 7550-35-8; LiCl, 7447-41-8; 2 propynenitrile, 1070-71-9; **2,3-diiodoprop-2-en-l-o1,** 1779-30-2. 46-0; **(Z)-~C,** 78708-26-6; **(Z)-4d,** 137627-63-5; **(Z)-4e,** 72261-36-0; (E)-8b, 34237-40-6; (Z)-8c, 15724-79-5; (E)-8c, 15724-86-4; NaI,

Supplementary Material Available: 'H NMR spectra for compounds **2h,** *2i,* and **6a** (3 pages). Ordering information is given on any current masthead page.

⁽³⁰⁾ Terpinski, J. Bull. *Acad. Pol. Sci., Ser. Sci. Chim.* **1971,19,391;** *Chem. Abstr.* **1971, 75, 139930~.**

⁽³¹⁾ Savenkov, N. F.; Khokhlov, P. S.; Nazarova, T. A.; Mochakin, A.

⁽³²⁾ Cavalchi, B.; Landini, D.; Montanari, F. J. *Chem. SOC.* **C 1969, I.;** *Zh. Org. Khim.* **1973,9,** *888; Chem. Abstr.* **1973, 79,418342. 1204.**